Violympic toán 9

H24

Cho x,y,z là các số thực thuộc đoạn [0:4]. Tìm giá trị lớn nhất của :P= \(\sqrt{xy}\left(x-y\right)+\sqrt{yz}\left(y-z\right)+\sqrt{zx}\left(z-x\right)\)

NH
6 tháng 1 2020 lúc 21:33

Đặt \(a=\sqrt{x},b=\sqrt{y},c=\sqrt{z}\) thì \(a,b,c\in\left[0;2\right]\)

\(P=ab\left(a^2-b^2\right)+bc\left(b^2-c^2\right)+ca\left(c^2-a^2\right)\)

Không mất tính tổng quát, giả sử \(a=max\left\{a,b,c\right\}\)

Ta có \(P=ab\left(a^2-b^2\right)+c\left(b^3-a^3\right)+c^3\left(a-b\right)\\ =ab\left(a^2-b^2\right)+c\left(b-a\right)\left(b^2+ba+a^2-c^2\right)\le ab\left(a^2-b^2\right)\le2b\left(4-b^2\right)\)

\(\Rightarrow P^2\le4b^2\left(4-b^2\right)^2\le2\left[\frac{2b^2+2\left(4-b^2\right)}{3}\right]^3=\frac{1024}{27}\Rightarrow P\le\frac{32\sqrt{3}}{9}\)

Vậy \(P_{max}=\frac{32\sqrt{3}}{9}\Leftrightarrow a=2,b=\frac{2\sqrt{3}}{3},c=0\) hay \(x=4,y=\frac{4}{3},c=0\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
MD
Xem chi tiết
KS
Xem chi tiết
ND
Xem chi tiết
TA
Xem chi tiết
TH
Xem chi tiết
AJ
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
BB
Xem chi tiết