Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right)(x+y+z)\geq \left(\sqrt{\frac{1}{16}}+\sqrt{\frac{1}{4}}+\sqrt{1}\right)^2\)
\(\Leftrightarrow P(x+y+z)\geq \frac{49}{16}\)
\(\Leftrightarrow P\geq \frac{49}{16}\) (do \(x+y+z=1\) )
Vậy \(P_{\min}=\frac{49}{16}\) tại \((x,y,z)=(\frac{1}{7}; \frac{2}{7}; \frac{4}{7})\)