Violympic toán 9

LQ

cho x,y,z là các số dương thỏa mãn x+y+z+\(\sqrt{yz}\)=4.CM

\(\sqrt{x\left(4-y\right)\left(4-z\right)}\)+\(\sqrt{y\left(4-z\right)\left(4-x\right)}\)+\(\sqrt{z\left(4-x\right)\left(4-y\right)}\)=8+\(\sqrt{xyz}\)

PQ
23 tháng 11 2019 lúc 12:40

Bạn ghi sai đề thì phải giả thiết phải là \(x+y+z+\sqrt{xyz}=4\)

Khi đó suy ra \(4\left(x+y+z\right)+4\sqrt{xyz}=16\)

Ta có: \(x\left(4-y\right)\left(4-z\right)=x[16-4\left(y+z\right)+yz]=x[4\left(x+y+z\right)+4\sqrt{xyz}-4\left(y+z\right)+yz]\)

\(=x\left(4x+4\sqrt{xyz}+yz\right)=x\left(2\sqrt{x}+\sqrt{yz}\right)^2\)

\(\Rightarrow\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x}\left(2\sqrt{x}+\sqrt{yz}\right)=2x+\sqrt{xyz}\)

tương tự \(\left\{{}\begin{matrix}\sqrt{y\left(4-z\right)\left(4-x\right)}=2y+\sqrt{xyz}\\\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\end{matrix}\right.\)

Cộng lại ta được VT\(=\) \(2\left(x+y+z+\sqrt{xyz}\right)+\sqrt{xyz}\) \(=8+\sqrt{xyz}\)(điều phải chứng minh)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BB
Xem chi tiết
DP
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
CN
Xem chi tiết
BL
Xem chi tiết
LH
Xem chi tiết
AR
Xem chi tiết
KS
Xem chi tiết