Bài 3: Bất phương trình một ẩn

CT

cho x,y,z là 3 số dương thỏa mãn:

xy + yz + xz = 12

tìm giá trị nhỏ nhất M= x4 + y4 + z4

AH
13 tháng 1 2018 lúc 23:35

Lời giải:

Áp dụng bất đẳng thức Cô-si cho các số dương ta có:

\(x^4+y^4+16+16\geq 4\sqrt[4]{16^2x^4y^4}=16xy\)

\(y^4+z^4+16+16\geq 4\sqrt[4]{16^2y^4z^4}=16yz\)

\(z^4+x^4+16+16\geq 4\sqrt[4]{16^2z^4x^4}=16zx\)

Cộng theo vế 3 BĐT trên ta có:

\(2(x^4+y^4+z^4)+96\geq 16(xy+yz+xz)\)

\(\Leftrightarrow 2M+96\geq 16.12=192\)

\(\Leftrightarrow M\geq 48\)

Vậy GTNN của \(M=48\)

Dấu bằng xảy ra khi \(x=y=z=2\)

Bình luận (0)