\(P=\dfrac{x+y}{z}+\dfrac{x+z}{y}+\dfrac{y+z}{x}\)
\(=\left(\dfrac{x}{z}+\dfrac{x}{y}\right)+\left(\dfrac{y}{z}+\dfrac{y}{x}\right)+\left(\dfrac{z}{y}+\dfrac{z}{x}\right)\)
\(=\dfrac{xy+xz}{yz}+\dfrac{xy+yz}{xz}+\dfrac{xz+yz}{xy}\)
\(=-\dfrac{yz}{yz}-\dfrac{xz}{xz}-\dfrac{xy}{xy}\)
\(=-3\)