Phân thức đại số

DN

cho x,y,z khác 0 và \(\dfrac{\left(ax+by+\text{c}z\right)^2}{x^2+y^2+z^2}\) = a\(^2\)+b\(^2\)+c\(^2\)

chứng minh rằng \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{\text{c}}{z}\)

ND
30 tháng 11 2017 lúc 21:37

\(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+x^2}=a^2+b^2+c^2\)

\(\Leftrightarrow\left(x^2+y^2+x^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+x^2z^2=a^2x^2+b^2y^2+c^2z^2+2axby+2axcz+2bycz\)\(\Leftrightarrow\left(a^2y^2+2axby+b^2x^2\right)+\left(a^2z^2+2axcz+c^2x^2\right)+\left(b^2z^2+2bycz+c^2y^2\right)=0\)\(\Leftrightarrow\left(ay+bx\right)^2+\left(az+cx\right)^2+\left(bz+cy\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\\bz=cy\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{a}{x}=\dfrac{c}{z}\\\dfrac{b}{y}=\dfrac{c}{z}\end{matrix}\right.\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\left(đpcm\right)\)

Bình luận (2)

Các câu hỏi tương tự
DT
Xem chi tiết
NP
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
NP
Xem chi tiết
VH
Xem chi tiết
HK
Xem chi tiết