Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

AS

Cho x,y,z khác 0 thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)\(\frac{2}{xy}-\frac{1}{z^2}=4\) . Tính \(P=\left(x+2y+z\right)^{2018}\)

BL
21 tháng 8 2019 lúc 10:32

+ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\Rightarrow\frac{1}{z}=2-\frac{1}{x}-\frac{1}{y}\)

\(\Rightarrow\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\)

+ \(\frac{2}{xy}-\frac{1}{z^2}=4\Rightarrow\frac{2}{xy}-\left(2-\frac{1}{x}-\frac{1}{y}\right)^2=4\)

\(\Rightarrow\frac{2}{xy}-\left(4+\frac{1}{x^2}+\frac{1}{y^2}-\frac{4}{x}-\frac{4}{y}+\frac{2}{xy}\right)=4\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}-\frac{4}{x}-\frac{4}{y}+8=0\)

\(\Rightarrow\left(\frac{1}{x}-2\right)^2+\left(\frac{1}{y}-2\right)^2=0\) \(\Rightarrow\left\{{}\begin{matrix}\left(\frac{1}{x}-2\right)^2=0\\\left(\frac{1}{y}-2\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}=2\\\frac{1}{y}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\\\frac{1}{z}=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow P=\left(\frac{1}{2}+1-\frac{1}{2}\right)^{2018}=1\)

Bình luận (0)

Các câu hỏi tương tự
AR
Xem chi tiết
HT
Xem chi tiết
DA
Xem chi tiết
LH
Xem chi tiết
AJ
Xem chi tiết
H24
Xem chi tiết
KM
Xem chi tiết
H24
Xem chi tiết
LQ
Xem chi tiết