Violympic toán 9

TH

Cho x,y,z > 0 và xy + yz + zx = 1

Tính giá trị biểu thức: \(P=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)

BL
17 tháng 8 2019 lúc 9:38

+ \(x\sqrt{\frac{\left(y^2+1\right)\left(z^2+1\right)}{x^2+1}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{x^2+xy+yz+zx}}\)

\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)

+ Tương tự : \(y\sqrt{\frac{\left(z^2+1\right)\left(x^2+1\right)}{y^2+1}}=xy+yz\)

\(z\sqrt{\frac{\left(x^2+1\right)\left(y^2+1\right)}{z^2+1}}=xz+yz\)

Do đó : \(P=2\left(xy+yz+zx\right)=2\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
KS
Xem chi tiết
AJ
Xem chi tiết
BL
Xem chi tiết
HT
Xem chi tiết