Violympic toán 9

H24

Cho x;y;\(\sqrt{x}+\sqrt{y}\) là các số hữu tỉ:

Chứng minh rằng: \(\sqrt{x};\sqrt{y}\) hữu tỉ

AH
17 tháng 7 2018 lúc 23:39

Lời giải:

Đặt \(\sqrt{x}+\sqrt{y}=a\in\mathbb{Q}\)

\(\Rightarrow \sqrt{x}=a-\sqrt{y}\)

Bình phương 2 vế:
\(x=a^2+y-2a\sqrt{y}\)

\(\Rightarrow 2a\sqrt{y}=a^2+y-x\in\mathbb{Q}\) do \(a,x,y\in\mathbb{Q}\)

Ta thấy \(\left\{\begin{matrix} 2a\sqrt{y}\in\mathbb{Q}\\ 2a\in\mathbb{Q}\end{matrix}\right.\Rightarrow \sqrt{y}\in\mathbb{Q}\)

\(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}\in\mathbb{Q}\\ \sqrt{y}\in\mathbb{Q}\end{matrix}\right.\Rightarrow \sqrt{x}\in\mathbb{Q}\)

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
BB
Xem chi tiết
JL
Xem chi tiết
DN
Xem chi tiết
HT
Xem chi tiết
GH
Xem chi tiết