Violympic toán 9

TZ

Cho x,y thỏa mãn

\(\left(x+\sqrt{x^2+2010}\right)\left(y+\sqrt{y^2+2010}\right)=2010\)

Hãy tính x+y

AT
20 tháng 10 2018 lúc 13:16

Đặt \(a=2010\).

\(\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\)(*)

Nhân cả 2 vế của (*) cho \(\sqrt{x^2+a}-x\), ta có:

\(\left(x+\sqrt{x^2+a}\right)\left(\sqrt{x^2+a}-x\right)\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)

\(\Leftrightarrow\left(x^2+a-x^2\right)\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)

\(\Leftrightarrow a\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)

\(\Leftrightarrow y+\sqrt{y^2+a}=\sqrt{x^2+a}-x\) (1)

Tương tự tiếp tục nhân (*) cho \(\sqrt{y^2+a}-y\), ta có:

\(x+\sqrt{x^2+a}=\sqrt{y^2+a}-y\) (2)

Cộng 2 vế (1) và (2), ta được:

\(S=y+\sqrt{y^2+a}+x+\sqrt{x^2+a}=\sqrt{x^2+a}-x+\sqrt{y^2+a}-y\)

\(S=y+x+x+y=\sqrt{x^2+a}+\sqrt{y^2+a}-\sqrt{y^2+a}-\sqrt{x^2+a}\)

\(S=2x+2y=0\)

\(S=x+y=0\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
TA
Xem chi tiết
BB
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
BB
Xem chi tiết
BH
Xem chi tiết