Cho 2 số thực dương x,y thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\). Chứng minh rằng: \(\sqrt{x}+\sqrt{y}\ge4\)
1. Cho các số thực x, y, z thỏa mãn điều kiện \(\left\{{}\begin{matrix}x-y+z=3\\x^2+y^2+z^2=5\end{matrix}\right.\)
\(P=\dfrac{x+y-2}{z+2}\) đạt giá trị lớn nhất là bao nhiêu?
2. Cho \(f\left(x\right)=2021x^2+\dfrac{6y^2}{2021}-4xy-\dfrac{y}{2021}+x+\dfrac{m^2}{2021}\)
Tìm m để \(f\left(x\right)>0\forall x,y\)
3. Cho hệ bất phương trình \(\left\{{}\begin{matrix}\left|x+1\right|\le1\\\dfrac{x}{m}< 1\end{matrix}\right.\) (m ≠ 0 là tham số thực)
Tìm tất cả các giá trị của tham số m để hệ bpt có đúng 3 nghiệm nguyên
Cho hai số thực x,y khác 0 thay đổi và thỏa mãn đk \(\left(x+y\right)xy=x^2+y^2-xy\). GTLN của bthuc \(M=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Cho a,b,c > 0 và các số x,y,z dương . CHứng minh rằng
\(\dfrac{a\left(z^2+y^2\right)}{b+c}+\dfrac{b\left(x^2+z^2\right)}{a+c}+\dfrac{c\left(x^2+y^2\right)}{a+b}\ge xy+yz+xz\)
Cho ba số thực dương x,y,z. Tính GTNN \(P=\dfrac{1}{2}\left(x^2+y^2+z^2\right)+\dfrac{x}{yz}+\dfrac{y}{zx}+\dfrac{z}{xy}\)
Cho 2 số thực dương x,y thỏa mãn
x + y = 4xy
CMR : Tập giá trị của P = xy là \(\left[\dfrac{1}{4};\dfrac{1}{3}\right]\)
chứng minh với x,y,z>0,xyz=1
\(\dfrac{1}{x^2\left(y+z\right)}+\dfrac{1}{y^2\left(z+x\right)}+\dfrac{1}{z^2\left(x+y\right)}\ge\dfrac{3}{2}\)
Cho \(x,y,z\ge0\) chứng minh:
\(\dfrac{x+y}{\left(x-y\right)^2}+\dfrac{z+y}{\left(y-z\right)^2}+\dfrac{x+z}{\left(x-z\right)^2}\ge\dfrac{9}{x+y+z}\)
Cho x;y;z;t thỏa mãn: \(xyzt=1\) Chứng minh rằng: \(\dfrac{1}{x^2\left(yz+zt+ty\right)}+\dfrac{1}{y^2\left(xz+zt+tx\right)}+\dfrac{1}{z^2\left(xy+xt+tz\right)}+\dfrac{1}{t^2\left(xy+yz+xz\right)}\ge\dfrac{4}{3}\)