Chương I - Căn bậc hai. Căn bậc ba

NH

cho x,y là các số tự nhiên và x+y\(\ge\)0. chứng minh \(\frac{1}{1+4^x}+\frac{1}{1+4^y}\ge\frac{2}{1+2^{x+y}}\)

AH
4 tháng 5 2020 lúc 18:35

Lời giải:

Đặt $2^x=a; 2^y=b(a,b>0)$. Vì $x+y\geq 0$ nên $ab=2^{x+y}\geq 1$

Yêu cầu đề bài tương đương với:

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\geq \frac{2}{1+ab}\)

\(\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2+1)(b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$

Do đó ta có đpcm.

Dấu "=" xảy ra khi $ab=1\Leftrightarrow 2^{x+y}=1\Leftrightarrow x+y=0$. Vì $x,y$ là số tự nhiên nên $x=y=0$

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
ML
Xem chi tiết
AD
Xem chi tiết
LL
Xem chi tiết
KA
Xem chi tiết
LH
Xem chi tiết