Lời giải:
Đặt $2^x=a; 2^y=b(a,b>0)$. Vì $x+y\geq 0$ nên $ab=2^{x+y}\geq 1$
Yêu cầu đề bài tương đương với:
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\geq \frac{2}{1+ab}\)
\(\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
\(\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2+1)(b^2+1)\)
\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)
\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$
Do đó ta có đpcm.
Dấu "=" xảy ra khi $ab=1\Leftrightarrow 2^{x+y}=1\Leftrightarrow x+y=0$. Vì $x,y$ là số tự nhiên nên $x=y=0$