Violympic toán 8

NP

cho x,y là cá số khác 0 thỏa mãn x^2-2xy+2y^2-2x+6y+5=0. tính P=(3x^2y-1)/4xy

LF
14 tháng 1 2017 lúc 17:26

Từ \(x^2-2xy+2y^2-2x+6y+5=0\)

\(\Rightarrow\left(x^2-2xy-2x+y^2+2y+1\right)+\left(y^2+4y+4\right)=0\)

\(\Rightarrow\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\left\{\begin{matrix}\left(x-y-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

Thay vào P ta có: \(P=\frac{3x^2y-1}{4xy}=\frac{3\cdot\left(-1\right)^2\cdot\left(-2\right)-1}{4\cdot\left(-1\right)\cdot\left(-2\right)}=-\frac{7}{8}\)

Bình luận (1)

Các câu hỏi tương tự
HN
Xem chi tiết
NS
Xem chi tiết
HA
Xem chi tiết
DB
Xem chi tiết
NT
Xem chi tiết
NM
Xem chi tiết
PQ
Xem chi tiết
NN
Xem chi tiết
HL
Xem chi tiết