\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{3}{2xy}\)
\(\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}+\dfrac{3}{2.\dfrac{\left(x+y\right)^2}{4}}=\dfrac{4}{\left(x+y\right)^2}+\dfrac{6}{\left(x+y\right)^2}\)
\(=\dfrac{10}{\left(x+y\right)^2}\ge10\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)