Violympic toán 8

HC

Cho \(x^3+y^3+z^3=3xyz\) .Rút gọn P= \(\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

HP
25 tháng 9 2018 lúc 18:28

Ta có:

\(x^3+y^3+z^3=3xyz\left(gt\right)\)

\(\Rightarrow x^3+y^3+z^3-3xyz=0\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Rightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Rightarrow\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)=0\)

\(\Rightarrow\left(x+y+z\right)^3-\left(x+y+z\right)\left(3xy+3zx+3yz\right)=0\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xy-3xz-3yz\right)=0\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\Rightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y+z=0\\\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)

\(\Rightarrow x=y=z\)

Xét trường hợp x = y = z, ta có:

\(P=\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(P=\dfrac{x^3}{2x.2x.2x}\)

\(P=\dfrac{x^3}{8x^3}\)

\(P=\dfrac{1}{8}\)

Xét trường hợp x + y + z = 0, ta có:

\(\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(y+x\right)\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{-\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\Rightarrow P=-1\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BC
Xem chi tiết
H24
Xem chi tiết
AG
Xem chi tiết
MM
Xem chi tiết
LC
Xem chi tiết
BT
Xem chi tiết
OM
Xem chi tiết