Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

EC

cho x , y , z tm \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}=\dfrac{3}{2}\)

CMR \(x^2+y^2+z^2=\dfrac{3}{2}\)

AH
25 tháng 10 2018 lúc 22:44

Lời giải:

Đặt \(A=x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\)

Áp dụng BĐT Bunhiacopxky và AM-GM:

\(A^2\leq (x^2+y^2+z^2)(1-y^2+1-z^2+1-x^2)\)

\(\leq \left(\frac{x^2+y^2+z^2+1-y^2+1-z^2+1-x^2}{2}\right)^2=(\frac{3}{2})^2\)

\(\Rightarrow A\leq \frac{3}{2}\)

Dấu "=" xảy ra khi \(x^2+y^2+z^2=1-y^2+1-z^2+1-x^2\Leftrightarrow x^2+y^2+z^2=\frac{3}{2}\)

Ta có đpcm.

Bình luận (5)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
DL
Xem chi tiết
PT
Xem chi tiết
DM
Xem chi tiết
BA
Xem chi tiết
H24
Xem chi tiết