Violympic toán 9

H24

Cho x, y, z là các số thực thoả mãn: \(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)

Tính: \(M=x^{10}+y^{100}+z^{1000}\)

AH
14 tháng 10 2021 lúc 21:21

Lời giải:
Ta có:

$(x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(x+z)$

$\Leftrightarrow 1^3=1+3(x+y)(y+z)(x+z)$

$\Leftrightarrow (x+y)(y+z)(x+z)=0$

$\Rightarrow x+y=0$ hoặc $y+z=0$ hoặc $x+z=0$

Không mất tổng quát giả sử $x+y=0$

Kết hợp với $x+y+z=1\Rightarrow z=1$

$\Rightarrow x^2+y^2=0$. Kết hợp với $x+y=0$ suy ra $x=y=0$

Do đó: $M=0^{10}+0^{100}+1^{1000}=1$

TH $y+z=0$ và $z+x=0$ ta cũng thu được điều tương tự

Vậy $M=1$

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết
NL
Xem chi tiết
BB
Xem chi tiết
EC
Xem chi tiết
MD
Xem chi tiết
PB
Xem chi tiết
KT
Xem chi tiết