Phân thức đại số

BA

cho x, y, z \(\in Z^+\)và xyz=1.CMR: \(\dfrac{x^2y^2}{2x^2+y^2+3x^2y^2}+\dfrac{y^2z^2}{2y^2+z^2+3y^2z^2}+\dfrac{z^2x^2}{2z^2+x^2+3y^2z^2}\le\dfrac{1}{2}\)

HN
28 tháng 4 2017 lúc 9:03

Ta đặt: \(\left\{{}\begin{matrix}\dfrac{1}{x^2}=a\\\dfrac{1}{y^2}=b\\\dfrac{1}{z^2}=c\end{matrix}\right.\)\(\Rightarrow\sqrt{abc}=abc=1\)

Ta có: \(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\dfrac{1}{\sqrt{a}}+1}+\dfrac{1}{\dfrac{1}{\sqrt{ab}}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{\sqrt{a}}{\sqrt{ba}+1+\sqrt{a}}+\dfrac{1}{1+\sqrt{ab}+\sqrt{a}}=1\)

Quay lại bài toán, sau khi đặt bài toán trở thành:

\(P=\dfrac{1}{2b+a+3}+\dfrac{1}{2c+b+3}+\dfrac{1}{2a+c+3}\)

\(=\dfrac{1}{\left(a+b\right)+\left(b+1\right)+2}+\dfrac{1}{\left(b+c\right)+\left(c+1\right)+2}+\dfrac{1}{\left(c+a\right)+\left(a+1\right)+2}\)

\(\le\dfrac{1}{2}\left(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\right)=\dfrac{1}{2}\)

Bình luận (1)
HN
28 tháng 4 2017 lúc 21:49

Cái đó t cố tình bỏ đấy. B phải tự làm chứ chẳng lẽ t làm hết??

Bình luận (2)

Các câu hỏi tương tự
TD
Xem chi tiết
TD
Xem chi tiết
VH
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
UN
Xem chi tiết
DC
Xem chi tiết
TN
Xem chi tiết
ND
Xem chi tiết