Ôn thi vào 10

VN

Cho x và y là hai số thực không âm thỏa mãn x + y = 4 . Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = \(x^4+y^4-4xy+3\)

NL
28 tháng 8 2021 lúc 19:10

\(P=\left(x^2+y^2\right)^2-2x^2y^2-4xy+3=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2-4xy+3\)

\(=\left(16-2xy\right)^2-2x^2y^2-4xy+3=2x^2y^2-68xy+259\)

\(4=x+y\ge2\sqrt[]{xy}\Rightarrow0\le xy\le4\)

Đặt \(xy=a\Rightarrow0\le a\le4\)

\(P=2a^2-68a+259=259-2a\left(34-a\right)\le259\)

\(P_{max}=259\) khi \(a=0\) hay \(\left(x;y\right)=\left(4;0\right);\left(0;4\right)\)

\(P=\left(2a^2-68a+240\right)+19=2\left(4-a\right)\left(30-a\right)+19\ge19\)

\(P_{min}=19\) khi \(a=4\) hay \(x=y=2\)

Bình luận (0)

Các câu hỏi tương tự
VN
Xem chi tiết
VN
Xem chi tiết
VN
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
KV
Xem chi tiết
VN
Xem chi tiết
VN
Xem chi tiết
GG
Xem chi tiết