Đặt: \(g(x) = u(x).v(x),\,\,f(x) = g(x).w(x)\)
Ta có:
\(f'(x) = g'(x).w(x) + g(x).w'(x) = \left( {u.v} \right)'.w(x) + (uv).w'(x) = \left( {u'v + uv'} \right).w + (uv).w'\)\( = u'vw + uv'w + uvw'\)
Đặt: \(g(x) = u(x).v(x),\,\,f(x) = g(x).w(x)\)
Ta có:
\(f'(x) = g'(x).w(x) + g(x).w'(x) = \left( {u.v} \right)'.w(x) + (uv).w'(x) = \left( {u'v + uv'} \right).w + (uv).w'\)\( = u'vw + uv'w + uvw'\)
a) \((u + v + w)' = u' + v' + w'\)
b) \((u + v - w)' = u' + v' - w'\)
c) \((uv)' = u'v'\)
d) \(\left( {\frac{u}{v}} \right)' = \frac{{u'}}{{v'}};\,\,\,v = v(x) \ne 0,v' = v'(x) \ne 0\)
Cho hàm số \(y = f(u) = \sin u;\,\,u = g(x) = {x^2}\)
a) Bằng cách thay u bởi \({x^2}\) trong biểu thức \(\sin u\), hãy biểu thị giá trị của y theo biến số x.
b) Xác định hàm số \(y = f(g(x))\)
Cho hai hàm số \(f(x);\,g(x)\) xác định trên khoảng (a; b), cùng có đạo hàm tại điểm \({x_0} \in (a;b)\)
a) Xét hàm số \(h(x) = f(x) + g(x);\,\,x \in (a;b)\). So sánh
\(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}}\) và \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{g({x_0} + \Delta x) - f({x_0})}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - g({x_0})}}{{\Delta x}}\)
b) Nêu nhận xét về \(h'({x_0})\) và \(f'({x_0}) + g'({x_0})\)
a) Tính đạo hàm của hàm số \(y = {x^2}\) tại điểm \({x_0}\) bất kì bằng định nghĩa
b) Dự đoán đạo hàm của hàm số \(y = {x^n}\) tại điểm x bất kì
Cho hàm số \(y = {x^{22}}\)
a) Tính đạo hàm của hàm số trên tại điểm x bất kì
b) Tính đạo hàm của hàm số trên tại điểm \({x_0} = - 1\)
Bằng định nghĩa, tính đạo hàm của hàm số \(y = \cos x\) tại điểm x bất kì
Bằng định nghĩa, tính đạo hàm của hàm số \(y = \cot x\) tại điểm x bất kì, \(x \ne k\pi (k \in \mathbb{Z})\)
Tính đạo hàm của hàm số \(y = \sqrt x \) tại điểm \({x_0} = 1\) bằng định nghĩa
Sử dụng kiết quả \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\), tính đạo hàm của hàm số \(y = \sin x\) tại điểm x bất kì bằng định nghĩa