Bài 2. Các quy tắc tính đạo hàm

H24

Cho hai hàm số \(f(x);\,g(x)\) xác định trên khoảng (a; b), cùng có đạo hàm tại điểm \({x_0} \in (a;b)\)

a)     Xét hàm số \(h(x) = f(x) + g(x);\,\,x \in (a;b)\). So sánh

\(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}}\) và \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{g({x_0} + \Delta x) - f({x_0})}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - g({x_0})}}{{\Delta x}}\)

b)    Nêu nhận xét về \(h'({x_0})\) và \(f'({x_0}) + g'({x_0})\)

QL
22 tháng 9 2023 lúc 20:24

a)     Ta có: \(\Delta x = x - {x_0},\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\)

\(\begin{array}{l}\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) + g(x) - f({x_0}) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - g\left( {{x_0}} \right)}}{{\Delta x}}\end{array}\)

b)    \(h'({x_0})\) = \(f'({x_0}) + g'({x_0})\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết