Hình học lớp 8

NL

Cho tứ giác lồi ABCD, trong đó AB + BD không lớn hơn AC + CD. Chứng minh rằng AB < AC

PT
24 tháng 1 2017 lúc 10:55

Ta có tứ giác ABCD bất kì.

\(AB+BD\) \(\text{< AC}\)\(+CD\) \(\left(gt\right)\left(1\right)\)

Xét \(\Delta ABD\) có:

\(BD< AB+AD\) (trong tam giác thì tổng 2 cạnh luôn lớn hơn cạnh thứ ba)

Suy ra: \(AB+BD\) \(\text{< AB}< AB\)\(+AD+AB \) (cộng AB cho cả 2 vế)

\(AB+BD \)\(\text{< 2AB}\)\(+AD\left(2\right)\)

Xét \(\Delta ACD\) có:

\(\text{CD < AD+AC }\)

Suy ra: \(AC+CD\) \(< AD+AC+AC \)

\(AC+CD \)\(< 2AC+AD\left(3\right)\)

Thay \(\left(2\right),\left(3\right)\) vào \(\left(1\right)\) ta có:

2AB+AD < 2AC+AD

\(\Leftrightarrow2AB< 2AC\)

\(\Leftrightarrow AB< AC\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
LK
Xem chi tiết
TV
Xem chi tiết
VH
Xem chi tiết
RD
Xem chi tiết
TH
Xem chi tiết
NK
Xem chi tiết