Cho tứ giác ABCD.gọi M,N,P,Q lần lượt là trung điểm AB,BC,CD,DA.Chứng mình véc tơ NP =véc tơ MQ và véc tơ PQ bằng véc tơ NM
1.Cho tam giác ABC,K là trung điểm của AB. Điểm I thoả mãn \(\overrightarrow{IB}\)= 2\(\overrightarrow{IC}\)
a, Biểu diễn \(\overrightarrow{IK}\) theo 2 véc tơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b, J thuộc đoạn thẳng AC sao cho JA= 2JC . Chứng minh I,J,K thẳng hàng
làm họ mik vs
Cho tứ giác ABCD. Gọi E,F lần lượt là trung điểm của AB, CD và O là trung điểm cừa. Chứng minh rằng: vectơ OA+OB+OC+OD= vectơ 0
Giải chi tiết giúp e với ạ e đang cần gấp ạ
Câu 1: Không dùng hình vẽ,CMR với 5 điểm bất kì A,B,C,K,M ta có véc tơ MK + véc tơ AB + véc tơ BC + véc tơ CA= véc tơ MK Câu 2: Cho đoạn thẳng AB.O là trung điểm của AB CM: véc tơ OA + véc tơ OB= véc tơ 0 Làm hộ mik ạ,mik cảm ơn ạ
cho hình bình hành ABCD có m thuộc B sao cho MB=2MA, N là trung điểm CD. gọi I và J lần lượt là điểm thỏa mãn vectơ BI = m.vectoBC, vecto AJ=n.vectoAI. khi j là trọng tam của tam giác BMN thì m.n bằng bao nhiêu?
cho hình bình hành ABCD có m thuộc B sao cho MB=2MA, N là trung điểm CD. gọi I và J lần lượt là điểm thỏa mãn vectơ BI = m.vectoBC, vecto AJ=n.vectoAI. khi j là trọng tam của tam giác BMN thì m.n bằng bao nhiêu
cho hình bình hành ABCD có m thuộc B sao cho MB=2MA, N là trung điểm CD. gọi I và J lần lượt là điểm thỏa mãn vectơ BI = m.vectoBC, vecto AJ=n.vectoAI. khi j là trọng tam của tam giác BMN thì m.n bằng bao nhiêu?
Cho 4 điểm A, B, C, D phân biệt bất kì. Gọi I và J lần lượt là trung điểm của AB và CD. Chứng minh rằng:
a. Nếu véc-tơ AB = véc- tơ CD thì véc-tơ AC = véc-tơ BD
b. Véc-tơ AB + véc-tơ BD = Véc-tơ AD + véc-tơ BC = 2.véc-tơ IJ
1) CHo tứ giác ABCD; M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA
CM: \(\overrightarrow{NP}=\overrightarrow{MQ}\)
\(\overrightarrow{PQ}=\overrightarrow{NM}\)