Chương 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

UU

Cho tứ diện ABCD Gọi M N lần lượt là trung điểm của các cạnh BC và AC Trên cạnh BP lấy điểm P sao cho DP=2PB

a) xác định giao tuyến của mặt phẳng (MNP )và mặt phẳng (ABD) b) trên cạnh AD lấy điểm Q sao cho DQ=2QA. Chứng minh PQ song song với mặt phẳng (ABC)
LH
28 tháng 12 2017 lúc 23:10

Bạn tự vẽ hình nhá

a, \(P\subset BD\in\left(ABD\right)\)

=> P là điểm chung của \(\left(MNP\right)vs\left(ABD\right)\)

Trong tam giác ABC có :

N là trung điểm AC

M là trung diểm BC

=> MN là đường trung bình của tg ABC => MN song song AB

Qua P kẻ (d) song song với AB

vậy giao tuyến 2mp là (d)

b, Vì QD=2QA => A là trung điểm QD

tương tự thì B là trung điểm DP

\(Q\subset AD\in ADB\)

\(P\subset DB\in ABD\)

trong tam giacs AQP có

A là trung điểm DP

B là trung điểm DP

=>AB là đường trung bình tg AQP

=> AB song song QP. mà \(AB\in ABC\)

=> QP song song (ABC)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HM
Xem chi tiết
AA
Xem chi tiết
NN
Xem chi tiết
MF
Xem chi tiết