Ta có:
\(\dfrac{1}{a}\) + \(\dfrac{1}{b}\) + \(\dfrac{1}{c}\) = \(\dfrac{bc+ac+ab}{abc}\)= bc + ac + ab (Vì abc = 1)
⇔ a + b + c > bc + ac + ab
⇔ a + b + c - bc - ac - ab > 0
⇔ a + b + c - bc - ac - ab + abc - 1 > 0
⇔ (a - ab) + (b - 1) + (c - bc) + (abc - ac) > 0
⇔ -a(b - 1) + (b - 1) + -c(b - 1) + ac(b - 1) > 0
⇔ (b - 1)(-a + 1 - c +ac) > 0
⇔ (b - 1)[(-a +1) + (ac - c)] > 0
⇔ (b - 1)[-(a - 1) + c(a - 1)] > 0
⇔ (b - 1)(a - 1)(c-1) > 0
Đúng 2
Bình luận (0)