Đại số lớp 7

LM

CMR: Nếu có tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\left(\dfrac{a-b}{c-d}\right)^{2014}=\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}\)

NS
23 tháng 5 2017 lúc 21:05

Đặt : \(\dfrac{a}{b}=\dfrac{c}{d}=k\) (k khác 0)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Khi đó:

+)\(\left(\dfrac{a-b}{c-d}\right)^{2014}=\left(\dfrac{bk-b}{dk-d}\right)^{2014}=\)

\(=\left(\dfrac{b.\left(k-1\right)}{d.\left(k-1\right)}\right)^{2014}=\left(\dfrac{b}{d}\right)^{2014}\) (1)

+)\(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{\left(bk\right)^{2014}+b^{2014}}{\left(dk\right)^{2014}+d^{2014}}=\)

\(=\dfrac{b^{2014}.\left(k^{2014}+1\right)}{d^{2014}.\left(k^{2014}+1\right)}=\dfrac{b^{2014}}{d^{2014}}=\left(\dfrac{b}{d}\right)^{2014}\) (2)

Từ (1) và (2) suy ra

(đ.p.c.m)

Bình luận (0)
AT
23 tháng 5 2017 lúc 21:50

Tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) có thể viết \(\dfrac{a}{c}=\dfrac{b}{d}\). Theo tính chất của dãy tỉ số bằng nhau ta có: \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\) hay nâng lên lũy thừa 2014:

\(\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}\)

Áp dụng lần nữa tính chất của tỉ số bằng nhau sẽ được:

\(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}\)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
NP
Xem chi tiết
GG
Xem chi tiết
NG
Xem chi tiết
GT
Xem chi tiết
PT
Xem chi tiết
KR
Xem chi tiết
TL
Xem chi tiết
Xem chi tiết