§2. Giá trị lượng giác của một cung

HC

cho tan\(\alpha\)\(\dfrac{-7}{3}\) với \(\dfrac{3\pi}{2}< \alpha< 2\pi\). tính các giá trị lượng giác của\(\alpha\)

HP
15 tháng 4 2021 lúc 17:09

\(\left\{{}\begin{matrix}tan\alpha=-\dfrac{7}{3}\\sin^2\alpha+cos^2\alpha=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{sin\alpha}{cos\alpha}=-\dfrac{7}{3}\\sin^2\alpha+cos^2\alpha=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{3}cos\alpha\\sin^2\alpha+cos^2\alpha=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{3}cos\alpha\\\dfrac{49}{9}cos^2\alpha+cos^2\alpha=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{3}cos\alpha\\cos^2\alpha=\dfrac{9}{58}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{3}cos\alpha\\cos\alpha=\dfrac{3}{\sqrt{58}}\end{matrix}\right.\) (Vì \(\dfrac{3\pi}{2}< \alpha< 2\pi\Rightarrow cos\alpha>0\))

\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{\sqrt{58}}\\cos\alpha=\dfrac{3}{\sqrt{58}}\end{matrix}\right.\)

\(cot\alpha=\dfrac{1}{tan\alpha}=-\dfrac{3}{7}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HO
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
DT
Xem chi tiết
LT
Xem chi tiết
JE
Xem chi tiết
H24
Xem chi tiết
DV
Xem chi tiết