Chương I - Hệ thức lượng trong tam giác vuông

LL

* Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy điểm M,N sao cho góc AMC= góc ANB= \(90^0\). Chứng minh:AM=AN

* Cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{AB}{AC}=\dfrac{20}{21}\)và AH=420. Tính chu vi tam giác ABC

NL
12 tháng 7 2021 lúc 14:59

1.

Tam giác AMC vuông tại M với đường cao MD

Áp dụng hệ thức lượng: \(AM^2=AD.AC\) (1)

Tương tự ta có:

\(AN^2=AE.AB\) (2)

Mặt khác xét hai tam giác vuông ABD và ACE có:

\(\widehat{BAC}\) chung

\(\Rightarrow\Delta_VABD\sim\Delta_VACE\) (g.g)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AD}{AE}\) \(\Leftrightarrow AB.AE=AC.AD\) (3)

(1);(2);(3) \(\Rightarrow AM^2=AN^2\) \(\Rightarrow AM=AN\)

 

Bài 2 tham khảo tại đây:

Cho tam giác ABC vuông tại A , đường cao AH . Biết AB/AC = 20/21 , AH = 420 . Tính chu vi tam giác ABC  - Hoc24

Bình luận (0)
NL
12 tháng 7 2021 lúc 15:00

undefined

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LN
Xem chi tiết
QE
Xem chi tiết
CC
Xem chi tiết
CC
Xem chi tiết
NN
Xem chi tiết
BN
Xem chi tiết
HD
Xem chi tiết
TN
Xem chi tiết