Cho tam giác ABC nhọn có các đường cao AD,BE,CF cắt nhau tại H
CMR:\(\frac{AD}{HD}\)+\(\frac{BE}{HE}\)+\(\frac{CF}{HF}\)≥9 (không dùng bất đẳng thức)
Bài 8 (1,0 đ): Cho tam giác ABC nhọn kẻ ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh: AH.DH+BH.EH=2CH.FH
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEG = 90
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEj = 90
Cho tam giác ABC ( AB<AC) có 3 góc nhọn, các đường cao AD,BE,CF cắt nhau tại H
a) cmr: tam giác AFH đồng dạng tam giác ADB
b) cmr: góc BEF = góc BCF
Cho tam giác ABC nhọn ( AB < AC ) có ba đường cao AD , BE , CF cắt nhau tại H.
a ) Chứng minh : tam giac ABE đồng dạng tam giác ACF
b) Chứng minh EC.HF=BF.HE
c) Chứng minh góc HEF = góc HCB
d) biết AE=9cm, AB=12cm. tính s tam giác ABC phần
tam giác AEF
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF và H là trực tâm. Chứng minh rằng:
a) tam giác AFE và tam giác ABC đồng dạng.
b) AD.HD=DB.DC
c) AH.HD=BH.HE=CH.HF
d) HD/AD + HE/BE + HF/CF =1
Bài 6 (3 điểm) Cho tam giác ABC nhọn có AB < AC. Kẻ 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh DABE ∽ DACF và AE. AC = AF. AB
b) Kẻ AH cắt BC tại D. Chứng minh AD vuông góc BC và góc ADE bằng góc ACH