cho tam giác ABC. tia phân giác góc ngoài tại đỉnh B , C cắt nhau tại O.từ A kẻ đường thẳng vuông góc với các đường phân giác trên, cắt đường thẳng BC lần lượt tại M,N. Chứng minh AB+AC+BC=MN
Cho tam giác ABC vuông góc ở A có AB < AC . Kẻ các đườngg phân giác AM và CD của tam giác ABC. Qua D kẻ đường thẳng vuông góc BC cắt BC tại E .Trên tia đối của dia AC lấy điểm F sao cho AF = BE .
a)C/m 3 điểm E,D,F thẳng hàng
b)Từ M kẻ đường thẳng vuông góc BC cắt AC ở N . Cm MN = MB
Cho tam giác ABC nhọn (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2. góc BME +góc B = góc ACB
c) BE=CF
Cho tam giác ABC. Các tia phân giác góc A và C cắt nhau tại I. Các đường phân giác góc ngoài tại đỉnh A và C cắt nhau tại K. CMR 3 điểm B,I,K thẳng hàng
trên cạnh BC của tam giác ABC lấy các điểm E, F sao cho BE=CF. Qua E và F vẽ các đường thẳng song song với BA, chúng cắt nhau theo thứ tự ở G và H. cmr: EG+FH=AB
Cho tam giác ABC có 3 góc nhọn. Qua A vẽ 1 đường thẳng vuông góc với AB. Đường thẳng này cắt tia phân giác góc B của tam giác ABC tại M. Kẻ MH vuông góc với BC ( H thuộc BC)
a) Chứng minh tam giác ABM bằng tam giác HBM
b) Kẻ đường cao AK của tam giác ABC. Gọi N là giao điểm của BM và AK. Chứng minh AK // HM
c) Chứng minh HN // AM
LÀM GIÚP MÌNH CÂU C THÔI NHA!!!
Cho tam giác ABC có các góc đều nhọn và AB < AC. Phân giác góc A cắt cạnh BC tại D. Vẽ BE vuông góc với AD tại E. Tia BE cắt cạnh AC tại F
a)Chứng minh AB = AFb) Qua F vẽ đường thẳng song song với BC , cắt AE tại H lấy điểm K nằm giữa D và C sao cho FH = DK. Chứng minh: DH = KF và DH song song với KFc) Chứng minh: Góc ABC > Góc CCho tam giác ABC, phân giác, qua B kẻ đường thẳng d song song với AD
a) Chứng tỏ d cắt AC tại E
b) CMR: ABE = AEB
c) Vẽ m qua A và vuông góc với AD, cắt BE tại F. CMR: AF là phân giác của góc EAB và m vuông góc với EB
trên cạnh BC của tam giác ABC lấy các điểm E, F sao cho BE=CF. Qua E và F vẽ các đường thẳng song song với BA, chúng cắt cạnh AC theo thứ tự ở G và H. cmr: EG+FH=AB