Hình học lớp 7

DN

Cho tam giác MNP vuông tai M có góc N=60 độ

a, Tính góc P

b, Trên cạnh NP, lấy điểm E sao cho NE=NM. Tia phân giác góc N cắt MP ở F. C/m tam giác NFM=tam giác NFE

c, Qua P, vẽ đường thẳng vuông góc với NF tại H. PH cắt đường thẳng MN tại Q. C/m tam giác NHQ= tam giác NHP

d, C/m tam giác NMP= tam giác NEQ và 3 điểm E, F, Q thẳng hàng

 

TH
25 tháng 12 2016 lúc 16:46

Ta có hình vẽ:

M P N E F H Q

Mk quên nối Q với F lại, bạn tự nối lại khi làm bài nhé

a/ Trong tam giác MNP có: M+N+P = 1800

hay 900+600+P = 1800

=> góc P = 300

b/ Xét tam giác NFM và tam giác NFE có:

NM = NE (GT)

góc MNF = góc ENF (GT)

NF : cạnh chung

=> tam giác NFM = tam giác NFE (c.g.c)

c/ Xét tam giác NMP và tam giác NEQ có:

N: góc chung

NM = NE (GT)

M = E = 900 (do tam giác NFM = tam giác NFE)

=> tam giác NMP = tam giác NEQ (g.c.g)

=> NQ = NP (2 cạnh tương ứng) (1)

Ta có: góc QNH = góc PNH (GT) (2)

NH: chung (3)

TỪ (1),(2),(3) => tam giác NHQ = tam giác NHP

d/ C/m tam giác NMP = tam giác NEQ (đã chứng minh ở câu c)

Xét tam giác MFQ và tam giác CFE có:

góc M = góc E = 900

NQ = NP; NM = NE => MQ = EP

góc Q = góc P (vì tam giác NMP = tam giác NEQ)

=> tam giác MFQ = tam giác CFE (g.c.g)

=> góc MFQ = góc EFP (2 góc tương ứng)

Ta có: \(\widehat{MFN}\)+\(\widehat{NFE}\)+\(\widehat{EFP}\)=1800

=> \(\widehat{MFN}\)+\(\widehat{NFE}\)+\(\widehat{MFQ}\)=1800

=> \(\widehat{QFE}\)=1800

hay E,F,Q thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
CN
Xem chi tiết
MS
Xem chi tiết
CD
Xem chi tiết
NL
Xem chi tiết
TC
Xem chi tiết
HL
Xem chi tiết
NA
Xem chi tiết
HK
Xem chi tiết
HK
Xem chi tiết