Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương II : Tam giác

NH

Cho tam giác MNK vuông tại M. Biết MN = 9cm; MK = 12cm.

a. Tính NK.

b. Trên tia đối của tia MN lấy điểm I sao cho MN = MI. Chứng minh: ΔKNI cân. c. Từ M vẽ MA ⊥ NK tại A, MB ⊥ IK tại B. Chứng minh ΔMAK = ΔMBK.

d. Chứng minh: AB // NI.

ND
18 tháng 3 2018 lúc 8:17

a)Ta có :

Vì Δ MNK vuông M nên NK2 = MN2 + MK2

⇒NK2 = 92 + 122

⇒NK2 = 81 + 144

⇒NK2 = 225

Vậy NK = 15

b)Theo CM trên, ta có :

NK2 = MN2 + MK2

IK2 = MI2 + MK2

MN = MI (gt) ; MK chung

⇒MN2+MK2 = MI2+MK2 hay NK=IK

⇒ΔKNI cân N

c)Ta có :

MK chung(1)

\(\widehat{MAK}=\widehat{MBK}=90^o\)(2)

Xét Δ MNK và Δ MIK, ta có :

MK chung

MI = MN

NK = IK

⇒Δ MNK = Δ MIK(c.c.c)

\(\widehat{MKN}=\widehat{MKI}\)(hai góc tương ứng)(3)

Từ (1), (2)(3) ⇒ ΔMAK=ΔMBK(cạnh huyền-góc nhọn)

d)Ta thấy : Δ MNK vuông M hay KM ⊥NI+

Gọi điểm C là điểm giao giữa AB và KM, ta có :

\(\widehat{KCA}+\widehat{KCB}=180^o\)*

Xét ΔKCA và ΔKCB, ta có :

AK=BK(ΔMAK=ΔMBK)

CK chung

\(\widehat{CKA}=\widehat{CKB}\)(Δ MNK = Δ MIK)

⇒ΔKCA = ΔKCB(c.g.c)

\(\widehat{CAK}=\widehat{CBK}\)(hai góc tương ứng)**

Từ * và ** ⇒ \(\widehat{CAK}=\widehat{CBK}=90^o\) hay KM ⊥ AB++

Từ + ++ ⇒ AB // NI

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
NC
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
ME
Xem chi tiết
H24
Xem chi tiết
HU
Xem chi tiết
MK
Xem chi tiết
GC
Xem chi tiết