Kẻ IA⊥ED tại A, IB⊥EF tại B, IC⊥DF tại C
Vì I cách đều ba cạnh nên IA=IB=IC
Xét ΔIAE vuông tại A và ΔIBE vuông tại B có
IE chung
IA=IB(cmt)
Do đó: ΔIAE=ΔIBE(Cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{AEI}=\widehat{BEI}\)(hai góc tương ứng)
\(\Leftrightarrow\widehat{DEI}=\widehat{FEI}\)
hay EI là tia phân giác của \(\widehat{DEF}\)(1)
Xét ΔICF vuông tại C và ΔIBF vuông tại B có
IF chung
IC=IB(cmt)
Do đó: ΔICF=ΔIBF(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{BFI}=\widehat{CFI}\)(hai góc tương ứng)
\(\Leftrightarrow\widehat{EFI}=\widehat{DFI}\)
hay FI là tia phân giác của \(\widehat{EFD}\)(2)
Xét ΔDAI vuông tại A và ΔDCI vuông tại C có
DI chung
IA=IC(cmt)
Do đó: ΔDAI=ΔDCI(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{ADI}=\widehat{CDI}\)(hai góc tương ứng)
\(\Leftrightarrow\widehat{EDI}=\widehat{FDI}\)
hay DI là tia phân giác của \(\widehat{EDF}\)(3)
Từ (1), (2) và (3) suy ra I là điểm chung của ba đường phân giác trong của ΔDEF(Đpcm)