Cho đường tròn (O) nội tiếp tam giác ABC với các tiếp điểm là D; E; F lần lượt thuộc các cạnh BC; CA; AB. Chứng minh rằng tích các khoảng cách hạ từ một điểm P bất kì thuộc đường tròn (O) đến các cạnh của tam giác ABC bằng tích các khoảng cách từ điểm P đến các cạnh của tam giác DEF
cho tam giác ABC có chu vi là 2P.Các đường tròn bàng tiếp trong góc A,B,C tiếp cúc với các cạnh BC,CA,AB theo thứ tự A1,B1,C1 .Đường tròn bàng tiếp của tam giác tiếp xúc với BC tại m
a) chứng minh CM=P
b) chứng minh rằng nếu AA1=BB1=CC1 thì tam giác ABC đều
cho tam giác ABC vuông tại A cạnh BC = 5cm và tỉ số hai hình chiếu của AB, AC trên cạnh huyền \(\dfrac{9}{16}\) . Tính din tích tam giác ABC
Cho tam giác ABC có diện tích 81 cm2. Qua điểm M nằm trong tam giác, vẽ các đường thẳng song song với các cạnh của tam giác, tạo thành 3 hình bình hành và ba tam giác nhỏ. Biết diện tích 2 trong 3 tam giác nhỏ bằng 4 và 16 cm2. Tính diện tích tam giác thứ 3.
Hãy tìm trong tam giác ABC một điểm M sao cho tích khoảng cách từ M đến 3 cạnh có giá trị lớn nhất
1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
cho tam giác ABC vuông tại C có \(\widehat{A}< \widehat{B}\). gọi I, O thứ tự là tâm đường tròn nội tiếp, ngoại tiếp ΔABC. biết ΔBIO vuông . tính tỉ số các cạnh của ΔABC
Tính hai cạnh góc vuông của một tam giác vuông biết rằng nếu tăng cạnh lớn lên 5cm và tăng cạnh nhỏ thêm 3cm thì diện tích tam giác tăng thêm 80cm2 và nếu giảm mỗi cạnh đi 2cm thì diện tích giảm đi 35cm2.