Violympic toán 8

BC

Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC

a) Tính độ dài OC; CD

b) Chứng minh rằng FD.BC = FC.AD

c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON.

TV
24 tháng 5 2018 lúc 12:42

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

\(\Rightarrow\dfrac{AO}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{DC}\Rightarrow\dfrac{12}{OC}=\dfrac{9}{3}=\dfrac{18}{DC}\) ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

\(\Rightarrow\dfrac{FD}{AD}=\dfrac{FC}{CB}\Rightarrow FD.BC=FC.AD\) ( ĐPCM )

c) Theo (1), ta đã có:

\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\Rightarrow\dfrac{OA}{OA+OC}=\dfrac{OB}{OB+OD}\Rightarrow\dfrac{OA}{AC}=\dfrac{OB}{BD}\) (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) ( Hệ quả định lý Ta - lét ) (3)

CMTT : \(\dfrac{ON}{DC}=\dfrac{OB}{DB}\) (4)

Từ (2), (3) và (4) => \(\dfrac{MO}{DC}=\dfrac{NO}{DC}\Rightarrow MO=NO\) ( ĐPCM )

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
PH
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
PK
Xem chi tiết
P2
Xem chi tiết
AS
Xem chi tiết
TD
Xem chi tiết
BB
Xem chi tiết