Ôn tập toán 7

H24

Cho tam giác ABC vuông tại C có góc A = 60 độ . Tia phân giác của góc BAC cắt BC ở E . Kẻ EK vuông góc với AB ( K thuộc AB ) . Kẻ BD vuông góc với tia AE ( D thuộc tia AE ) . Chứng minh :
a) AC = AK
b) AE là đường trung trực của đoạn thẳng CK
c ) KA = KB
d ) AC < EB

Câu C mình thấy nhiều người là tma giác ABK cân tại B là sai nhé -_- ABK là ba điểm nhé -_- Giải giùm mình đi ; ; 

NP
6 tháng 8 2016 lúc 20:39

A B C D E K H

a) gọi giao điểm của AE và CK là H

xét 2 tam giác vuông AKE và ACE có:

AE(chung)

KAE=CAE(gt)

=> ΔAKE=ΔACE(CH-GN)

=> AC=AK

b)xét ΔAKH và ΔACH có:

AC=AK(theo câu a)

AH(chung)

KAH=CAH(gt)

=> ΔAKH=ΔACH(c.g.c)

=>\(\begin{cases}HK=HC\\AHK=AHC\end{cases}\)

mà AHK+AHC=\(180^o\)

=> AHK=AHC=\(180^o:2=90^o\)

ta có: AE_|_CK và HK=HC

=> AE là đường trung trực của CK

c)

ΔABC vuông tại C có góc A=\(60^o\) => góc B=\(30^o\)

=>AC=1/2 AB

=>AK=1/2AB

ta có: BK=AB-AK=AB-1/2AB=1/2AB

=> AK=BK

d)ΔABC vuông tại C  có A=\(60^o\)

=> AC=AK=BK=1/2AB(theo câu c)

ta có Δ AKE vuông tại K=> BK<BE

=> AC<BE(đfcm)

Bình luận (3)

Các câu hỏi tương tự
H24
Xem chi tiết
TC
Xem chi tiết
GT
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
LO
Xem chi tiết
PL
Xem chi tiết
LP
Xem chi tiết
NN
Xem chi tiết