Ôn tập toán 7

H24

Cho tam giác ABC vuông tại C có góc A = 60 độ . Tia phân giác của góc BAC cắt BC ở E . Kẻ EK vuông góc với AB ( K thuộc AB ) . Kẻ BD vuông góc với tia AE ( D thuộc tia AE ) . Chứng minh :
a) AC = AK
b) AE là đường trung trực của đoạn thẳng CK
c ) KA = KB
d ) AC < EB

Các cậu vẽ hình rồi giải nhé khocroi ​Không vẽ cũng được ~ Không sao

LO
5 tháng 8 2016 lúc 18:05

bạn tự vẽ hình nha

Xét tg AEC và tg AEK có:

góc ACE= góc AEK ( = 90 độ )

AE : cạnh chung

góc A= góc A2 ( AE là phân giác )

=> tg AEC= tg AEK ( cạnh huyền - góc nhọn )

=> AC= AK ( 2 cạnh tương ứng )

b) Vì AC= AK ( theo a)

=> tg ACK cân tại A

Vì trong 1 tg cân đường phân giác đồng thời là đường trung tuyến nên Ả là đường trung trực của CK

c) Xét tg AEK và tg BEK có:

góc AKE= góc BKE ( = 90 độ )

KE : cạnh chung

góc KAE = góc KBE ( đồng vị )

=> tg AEK= tg BEK ( c-g-c)

=> KA= KB

 

Bình luận (1)
LH
5 tháng 8 2016 lúc 16:04

a/ Tam giác ABE vuông tại A và tam giác BKE vuông tại K có

ABE=KBE(BE là p/g ABK)

BE là cạnh chung

Tam giác ABE=Tam giác BKE (ch-gn)

=>BA=BK hay tam giác ABK cân tại B nên đường phân giác BE đồng thòi là đường cao. Vậy BE vuông góc với AK.

b/Tam giác ABK cân tại B có B=60 độ nên là tam giác đều =>KB=KA=AB. Tương tụ ta có tam giác KBC cân tại K => KC=KA

Vậy KB=KC

c/EC>AB

Ta có EK là trung trực BC nên EB=EC, mà EB>AB do tam giác ABE vuông tại A nên EC>AB

d/ Gọi giao điểm AB và CD là N. Ta cần chứng minh N,E,K thẳng hàng để 3 đường thắng AB,EK,CD đi qua 1 điểm.

Thật vậy, tam giác AEN và tam giác KEC có

NAE=EKC (=90 độ)

EA=EK (c/mt)

EN=EC(tam giác BNC có phân giác BD đồng thời là đường cao nên đồng thời là trung trức CN)

Vậy tam giác AEN=tam giác KEC (ch-gn)

=> AEN=KEC

2 góc này ở vị trí đối đỉnh nên N,E,K thắng hàng. Vậy N,E,K thẳng hàng =>AB,EK,DC cùng đi qua 1 điểm

Bình luận (0)
LO
5 tháng 8 2016 lúc 18:48

d) Ta có EK là trung trực BC nên EB= EC mà EB> AB vì tg ABE vuông tại A nên EC>AB

Bình luận (1)
H24
14 tháng 5 2019 lúc 20:49

banhqua

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HT
Xem chi tiết
TC
Xem chi tiết
GT
Xem chi tiết
NT
Xem chi tiết
LO
Xem chi tiết
LP
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết