Chương I: VÉC TƠ

XT

Cho tam giác ABC vuông tại B, góc A=300, BC=a. I là trung điểm AC. Tính |vectoAB+vectoAC|, |vectoBA+vectoBC|, |vectoAC+vectoBC|

HH
1 tháng 8 2019 lúc 20:55

Hmm, bài này hình như mk làm câu đầu r nhỉ, mấy câu sau tg tự thui à :))

Vẽ hcn ABCD, theo quy tắc hbh có: \(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BD}\)

\(\Rightarrow\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=\left|\overrightarrow{BD}\right|=BD\)

Có BD=AC= 2a (cạnh đối diện vs góc 300 bằng 1 nửa cạnh huyền)

\(\Rightarrow\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=2a\)

Vẽ hbh ACBE=> \(\overrightarrow{BC}=\overrightarrow{EA}\)

\(\Rightarrow\overrightarrow{AC}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{EA}=\overrightarrow{EC}\)

\(\Rightarrow\left|\overrightarrow{AC}+\overrightarrow{BC}\right|=\left|\overrightarrow{EC}\right|=EC\)

DE= 2BC= 2a

=> \(DC=\sqrt{4a^2-a^2}=\sqrt{3}a\)

=> \(EC=\sqrt{ED^2+CD^2}=\sqrt{4a^2+3a^2}=\sqrt{7}a\)

\(\Rightarrow\left|\overrightarrow{AC}+\overrightarrow{BC}\right|=\sqrt{7}a\)

Bình luận (0)

Các câu hỏi tương tự
DS
Xem chi tiết
XT
Xem chi tiết
KK
Xem chi tiết
HB
Xem chi tiết
TN
Xem chi tiết
XT
Xem chi tiết
QD
Xem chi tiết
LP
Xem chi tiết
CM
Xem chi tiết