Chương I - Hệ thức lượng trong tam giác vuông

TD

Cho tam giác ABC vuông tại A,đường cao AH(H thuộc BC)                                                  1/Giả sử AB=6cm,AC=8cm.Tính độ dài BC,AH                                                                      2/Kẻ HE vuông góc với AB tại E.Gọi I là trung điểm của HC.Kẻ HF vuông góc với AI tại F. Chứng minh tam giác AEF đồng dạng với tam giác AIB.

AT
18 tháng 7 2021 lúc 18:57

a) tam giác ABC vuông tại A nên áp dụng Py-ta-go:

\(\Rightarrow BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng 

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4.8\left(cm\right)\)

b) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow AE.AB=AH^2\)

tam giác AHI vuông tại H có đường cao HF nên áp dụng hệ thức lượng

\(\Rightarrow AF.AI=AH^2\Rightarrow AF.AI=AE.AB\Rightarrow\dfrac{AF}{AB}=\dfrac{AE}{AI}\)

Xét \(\Delta AEF\) và \(\Delta AIB:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AI}=\dfrac{AF}{AB}\\\angle BAIchung\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta AIB\left(c-g-c\right)\)

undefined

 

Bình luận (0)
NT
18 tháng 7 2021 lúc 22:35

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
VL
Xem chi tiết
LH
Xem chi tiết
NK
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
AN
Xem chi tiết
KL
Xem chi tiết