Chương II : Tam giác

DM

Cho tam giác ABC vuông tại A, phân giác BD . Kẻ DE vuông góc với BC.a) chứng minh rằng: tam giác ABD= tam giác EBD.b) kẻ AH vuông góc với BC,AH cắt BD tại I.Chứng minh rằng: AH song song với DE,tam giác AID cân

MP
23 tháng 5 2023 lúc 20:58

a) Ta có $\angle ABD = \angle EBD$ (vì BD là phân giác của góc $\angle ABC$), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD có cặp góc đồng nhất, nên chúng bằng nhau theo trường hợp góc - góc - góc của các tam giác đồng dạng. Do đó, ta có tam giác ABD = tam giác EBD.

b) Ta cần chứng minh AH song song với DE, và tam giác AID cân.

Ta có $\angle ABD = \angle EBD$ (theo phần a)), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD đồng dạng. Do đó:

$$\frac{AB}{EB} = \frac{BD}{BD} = 1$$

$$\Rightarrow AB = EB$$

Mà $AH$ là đường cao của tam giác $ABC$, nên $AB = AH \cos(\widehat{BAC})$. Tương tự, ta có $EB = ED \cos(\widehat{BAC})$. Vậy:

$$\frac{AH}{ED} = \frac{AB}{EB} = 1$$

Do đó, $AH = ED$, hay $AH$ song song với $DE$.

Tiếp theo, ta chứng minh tam giác $AID$ cân. Ta có:

$$\angle AID = \angle BID - \angle BIA = \frac{1}{2} \angle ABC - \angle BAC$$

Mà $\angle ABC = 90^\circ + \angle BAC$, nên:

$$\angle AID = \frac{1}{2}(90^\circ + \angle BAC) - \angle BAC = \frac{1}{2}(90^\circ - \angle BAC)$$

Tương tự, ta có:

$$\angle ADI = \frac{1}{2} \angle ADB = \frac{1}{2} \cdot 90^\circ = 45^\circ$$

Vậy tam giác $AID$ có hai góc bằng nhau là $\angle AID$ và $\angle ADI$, nên đó là tam giác cân.

Vậy, ta đã chứng minh được rằng $AH$ song song với $DE$, và tam giác $AID$ cân.

Bình luận (1)
NT
24 tháng 5 2023 lúc 8:10

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔABD=ΔEBD

b: AH vuông góc BC

DE vuông góc BC

=>AH//DE

Bình luận (0)

Các câu hỏi tương tự
KN
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
WR
Xem chi tiết
PN
Xem chi tiết
ND
Xem chi tiết