Hình học lớp 8

PT

Cho tam giác ABC vuông tại A . Gọi M là trung điểm BC . Qua M kẻ ME vuông góc AB ( E ϵ AB ) , MF vuông góc AC ( F ϵ AC ).
a. Chứng minh tứ giác AEMF là hình chữ nhật .
b. Gọi N là điểm đối xứng của M qua F . Tứ giá MANC là hình gì ? Tại sao ?
c. Tìm điều kiện của tam giác ABC để tứ giác AEMF là hình vuông.

NH
19 tháng 11 2016 lúc 18:01

(Hình bạn tự vẽ nha)

a ,

Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .

b ,

Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB

Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .

-> AC là đường trung trực của MN

->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .

-> Tứ giác MANC là hình thoi.

c ,

Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)

Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .

-> AE = EB (2)

Vì tứ giác MANC là hình thoi nên AF=FC (3)

Từ (1),(2) và (3) suy ra BE = FC (4)

Từ (1) và (4) suy ra : AE + BE = AF + FC

hay AB = AC

-> Tam giác ABC là tam giác vuông cân .

Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .

 

 

Bình luận (1)
NH
19 tháng 11 2016 lúc 18:13

Hỏi đáp Toán

Bình luận (2)