Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

NH

Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên BC lấy E sao cho AB = AE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD với FC. CMR:

a) Tam giác ABD = Tam giác EBD và DE vuông góc BC

b) BD là đường trung trực của đoạn thẳng AE

c) Ba điểm D; E; F thẳng hàng 

d) Điểm D cách đều ba cạnh của tam giác AEI

 

NT
12 tháng 4 2021 lúc 23:31

b) Ta có: ΔBAD=ΔBED(cmt)

nên DA=DE(hai cạnh tương ứng)

Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)

Bình luận (0)
NT
12 tháng 4 2021 lúc 23:30

Sửa đề: BA=BE

a) Xét ΔBAD và ΔBED có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBAD=ΔBED(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE⊥BC(đpcm)

Bình luận (0)
NT
12 tháng 4 2021 lúc 23:33

c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

AF=EC(gt)

Do đó: ΔADF=ΔEDC(hai cạnh góc vuông)

Suy ra: \(\widehat{ADF}=\widehat{EDC}\)(hai góc tương ứng)

mà \(\widehat{ADF}+\widehat{FDC}=180^0\)(hai góc kề bù)

nên \(\widehat{EDC}+\widehat{FDC}=180^0\)

hay D,E,F thẳng hàng(đpcm)

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
MP
Xem chi tiết
LC
Xem chi tiết
TN
Xem chi tiết
PA
Xem chi tiết
NT
Xem chi tiết
06
Xem chi tiết
VQ
Xem chi tiết
NN
Xem chi tiết