Bài 2: Tỉ số lượng giác của góc nhọn

DT

Cho tam giác ABC vuông tại A có đường cao AH. Vẽ (A; AH) và đường kính HD. Qua D vẽ tiếp tuyến với đường tròn, tiếp tuyến này cắt đường thẳng BA tại điểm E. a) C/m: SinC :SinB = AB: AC

b) C/m: Δ ADE = Δ AHB.

c) C/m: CBE cân.

d, Gọi I là hình chiếu của A trên CE. C/m: CE là tiếp tuyến của đường tròn (A; AH).  

NT
20 tháng 12 2023 lúc 21:55

a: Xét ΔABC vuông tại A có \(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}\\sinC=\dfrac{AB}{BC}\end{matrix}\right.\)

=>\(\dfrac{sinC}{sinB}=\dfrac{AB}{BC}:\dfrac{AC}{BC}=\dfrac{AB}{AC}\)

b: Xét ΔAHB vuông tại H và ΔADE vuông tại D có

AH=AD

\(\widehat{HAB}=\widehat{DAE}\)

Do đó: ΔAHB=ΔADE

c: Ta có: ΔAHB=ΔADE

=>AB=AE

=>A là trung điểm của BE

Xét ΔCEB có

CA là đường trung tuyến

CA là đường cao

Do đó: ΔCEB cân tại C

d: Ta có: ΔCEB cân tại C

mà CA là đường cao

nên CA là phân giác của góc BCE

Xét ΔCIA vuông tại I và ΔCHA vuông tại H có

CA chung

\(\widehat{ICA}=\widehat{HCA}\)

Do đó: ΔCIA=ΔCHA

=>AI=AH

Xét (A;AH) có

AI là bán kính

CE\(\perp\)AI tại I

Do đó: CE là tiếp tuyến của (A;AH)

Bình luận (0)

Các câu hỏi tương tự
ML
Xem chi tiết
VT
Xem chi tiết
MH
Xem chi tiết
UN
Xem chi tiết
NL
Xem chi tiết
BD
Xem chi tiết
NL
Xem chi tiết
HV
Xem chi tiết
HV
Xem chi tiết