Ôn tập Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

HH

Cho tam giác ABC vuông tại A, BM là đường phân giác. vẽ \(MH\perp BC\) tại H, MH cắt AB tại E. Chứng minh:

a, \(\Delta ABM=\Delta HBM\)

b, AM < CM

c, \(BM\perp BC\)

d, AH // BC

( NHỜ M.N GIÚP MK, HÔM NAY MK PHẢI NỘP BÀI RỒI Ạ )

NT
21 tháng 6 2020 lúc 8:02

a) Xét ΔABM vuông tại A và ΔHBM vuông tại H có

BM chung

\(\widehat{ABM}=\widehat{HBM}\)(BM là tia phân giác của \(\widehat{ABC}\), H∈BC)

Do đó: ΔABM=ΔHBM(cạnh huyền-góc nhọn)

b) Ta có: ΔABM=ΔHBM(cmt)

⇒AM=HM(hai cạnh tương ứng)(1)

Xét ΔMHC vuông tại H có MC là cạnh huyền(vì MC là cạnh đối diện với \(\widehat{MHC}=90^0\))

nên MC là cạnh lớn nhất trong ΔMHC vuông tại H(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)

hay HM<MC(2)

Từ (1) và (2) suy ra AM<CM(đpcm)

c) Sửa đề: Chứng minh BM⊥EC

Ta có: ΔABM=ΔHBM(cmt)

⇒BA=BH(hai cạnh tương ứng)

Xét ΔAME vuông tại A và ΔHMC vuông tại H có

MA=MH(cmt)

\(\widehat{AME}=\widehat{HMC}\)(hai góc đối đỉnh)

Do đó: ΔAME=ΔHMC(cạnh góc vuông-góc nhọn kề)

⇒AE=HC(hai cạnh tương ứng)

Ta có: BE=BA+AE(A nằm giữa B và E)

BC=BH+HC(H nằm giữa B và C)

mà BA=BH(cmt)

và AE=HC(cmt)

nên BE=BC

hay B nằm trên đường trung trực của EC(tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: ΔAME=ΔHMC(cmt)

⇒ME=MC(hai cạnh tương ứng)

hay M nằm trên đường trung trực của EC(tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra BM là đường trung trực của EC

hay BM⊥EC(đpcm)

d) Chứng minh AH//EC

Ta có: BA=BH(cmt)

hay B nằm trên đường trung trực của AH(tính chất đường trung trực của một đoạn thẳng)(5)

Ta có: MA=MH(cmt)

hay M nằm trên đường trung trực của AH(tính chất đường trung trực của một đoạn thẳng)(6)

Từ (5) và (6) suy ra BM là đường trung trực của AH

hay BM⊥AH

Ta có: BM⊥AH(cmt)

BM⊥EC(cmt)

Do đó: AH//EC(định lí 1 từ vuông góc tới song song)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
KP
Xem chi tiết
HB
Xem chi tiết
PT
Xem chi tiết
QP
Xem chi tiết
TK
Xem chi tiết
TN
Xem chi tiết
HY
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết