Ôn tập Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

AV

cho tam giác ABC vuông tại A, AB<AC. Kẻ phân giác BD của góc ABC kẻ DM vuông góc với BC
a) chứng minh tam giác DAB= tam giác DMB
b) chứng minh AD<DC
c) Gọi K là giao điểm của DM và AB, BD cắt KC tại N. Chúng minh BN vuông góc với KC và tam giác KDC cân

giúp mình với

 

H24

Bạn tự vẽ hình nha =)

a) Xét tam giác DAB và tam giác DMB có:

 Góc DAB= Góc DMB (=90 độ)

 Chung cạnh BD

=> Góc DAB= Góc DMB

b) Vì 

Góc DAB= Góc DMB=> BA=BM,DA=DM

  => B,D trung trực AM

=> DB là  trung trực AM

c.Ta có: DM⊥BC=>KD⊥BC

               CA⊥AB=>CD⊥BK

 

=>D là trực tâm tam giác BCK

→BD⊥CK

→BN⊥KC

 

Xét ΔBMK,ΔBAC ta có:

Chung B

=>BM=BA

ˆBMK=ˆBAC(=90độ)

=>ΔBMK=ΔBAC(c.g.c)

=>BK=BC

=>ΔKBC cân tại B

 

Bình luận (1)

Các câu hỏi tương tự
TM
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
TT
Xem chi tiết
LL
Xem chi tiết
QT
Xem chi tiết
QT
Xem chi tiết
TN
Xem chi tiết
NY
Xem chi tiết