Tam giác đồng dạng

DC

Cho tam giác ABC vuông tại A( AB>AC) , đường cao AH. Từ B kẻ Bx vuông góc với AB, tia Bx cắt tia AH tại K .

a) Tứ giác ABKC là hình gì ? Tại sao ?

b)Chứng minh : tam giác ABK ~ tam giác CHA.Từ đó suy ra: AB.AC=AK.CH

c) Chứng minh: AH2 =HB .HC

d) Giả sử BH=9cm , HC=16cm . Tính AB,AH

PN
3 tháng 4 2017 lúc 22:48

a) tứ giác ABKC là hình thang vuông.

có AC vuông góc với AB, BK vuông góc góc AB

=> AC song song với BK (từ vuông góc đến song song)

=> tứ giác ACKB là hình thang và có góc CAB =900 (gt)

=> tứ giác ACKB là hình thang vuông

b) Theo câu a) ACKB là hình thang => AC song song với KB

=> góc CAK = góc AKB (so le trong)

Xét tam giác ABK và tam giác CHA có:

góc CAK = góc AKB (CM/trên)

và góc ABK = góc CHA (=900)

=> tam giác ABK đồng dạng với tam giác CHA (g-g)

\(\Rightarrow\dfrac{AB}{CH}=\dfrac{AK}{AC}\Rightarrow AB.AC=AK.CH\)

c) Xét tam giác CAH thì có góc CAH = 900 - góc ACH (1)

Xét tam giác ABC thì góc ABC = 900 - góc ACH (2)

Từ (1)(2)=. góc CAH = góc ABC

Xét tam giác CAH và tam giác ABH có:

góc CAH = góc HBA (CM/trên)

và góc CHA = góc AHB (=900)

=> tam giác CAH đồng dạng với tam giác ABH (g-g)

=> \(\dfrac{AH}{BH}=\dfrac{CH}{AH}\Rightarrow AH^2=CH.BH\)

d) Theo câu c) ta có \(AH^2=BH.CH\) thay số vào ta được:

\(AH^2=9.16=144\Rightarrow AH=12\left(cm\right)\)

Áp dụng định lí Py-ta-go vào tam giác AHB ta có:

\(AB^2=AH^2+HB^2=12^2+9^2=225\Rightarrow AB=15\left(cm\right)\)

Bình luận (0)
KC
6 tháng 4 2017 lúc 21:16

hôm nào tớ thấy bn cũng có bài tập toàn bài tập dễ mà ko chịu làm gianroi

Bình luận (0)

Các câu hỏi tương tự
VD
Xem chi tiết
KM
Xem chi tiết
DB
Xem chi tiết
LD
Xem chi tiết
TT
Xem chi tiết
NC
Xem chi tiết
TN
Xem chi tiết
ND
Xem chi tiết
RT
Xem chi tiết