a: AC=4cm
b: Xét ΔBCD có
CA là đường cao
CA là đường trung tuyến
Do đó:ΔCBD cân tại C
c: Xét ΔCDB có
CA làđường trung tuyến
CE=2/3CA
DO đó: E là trọng tâm
=>DE đi qua trung điểm của BC
a: AC=4cm
b: Xét ΔBCD có
CA là đường cao
CA là đường trung tuyến
Do đó:ΔCBD cân tại C
c: Xét ΔCDB có
CA làđường trung tuyến
CE=2/3CA
DO đó: E là trọng tâm
=>DE đi qua trung điểm của BC
tam giác abc vuông tại a (ab<ac). tia đối ac lấy điểm d sao cho ad=ab, tia đối ab lấy điểm e sao cho ae=ac. đường cao ah của tam giác abc tia ah cắt cạnh de tại m a kẻ đường thẳng vuông góc tại k đường thẳng cắt bc tại n
chứng minh
a,bc=de
b,
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Câu 18 (2,5 điểm). Cho tam giác ABC vuông tại A (AB > AC). Trên tia đối của tia AC lấy điểm D sao cho AD = AB, trên tia đối của tia AB lấy điểm E sao cho AE = AC. Chứng minh:
a)tam giác ABC =tam giác ADE.
b) AEC=ACE= 45 độ
Cho tam giác ABC vuông cân tại A. Trên cạnh AB, AC lần lượt lấy các điểm M, N sao cho góc ABN = góc ACM = 15 độ. Gọi I là giao điểm của MC và NB. Gọi H,E,D lần lượt là trung điểm của BC,BN,CM.
a) So sánh tam giác ABN và tam giác ACM.
b) C/m tam giác ADE đều.
c) C/m 3 điểm A,I,H thẳng hàng.
d) Tính góc DHE
Cho tam giác ABC vuông tại a với AB/AC=3/4 và BC=10cm
a,Tính AB, AC
b, Trên cạnh AC lấy điểm E sao cho AE=2cm ,trên tia đối của tia AB lấy điểm D sao cho AB=AD. Chứng minh tam giác BEC= tam giác DEC
c, Chứng minh DE đi qua trung điểm cạnh BC
cho tam giác ABC vuông tại A (AB bé hơn AC). gọi D là trung điểm của đoạn thẳng BC, đường thẳng qua D và vuông góc với BC cắt AC tại E. trên tia đối của tia AC lấy điểm F sao cho AE=AF; đường thẳng DA cắt đường thẳng BF tại M.
a. chứng minh tam giác FAM cân
b. biết AB=3cm; BC=5cm, tính độ dài đoạn BM
Bài 4: Cho tam giác ABC vuông tại B ( AB < BC ), phân giác AE ( E thuộc BC ). Từ E kẻ ED vuông góc AC ( D thuộc AC )
a) C/m tam giác ADE = tam giác ABE
b) So sánh EB và EC
c) Kẻ CH vuông AE ( H thuộc AE ). Trên tia đối của HA lấy điểm F sao cho HF = HE. C/m tam giác CEF cân và BD // CH
d) Gọi O là giao điểm của CE và AB. C/m E,D,O thẳng hẳng
CHO TAM GIÁC A,B,C,CÓ AB=AC. E LÀ TRUNG ĐIỂM CỦA BC , TRÊN TIA ĐỐI CỦA TIA EA LẤY ĐIỂM D SAO CHO AE = ED a.CHỨNG MINH : AB//DC b.CHỨNG MINH :AE VUÔNG BC c.TÌM ĐIỀU KIỆN CỦA TAM GIÁC A,B,C ĐỂ GÓC ABC BẰNG 45ĐỘ