Chương II : Tam giác

HH

Cho tam giác ABC vuông góc tại A. Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA = HD.
a, Cho BH = 4cm, HA = 3cm. Tính AB.
b, Chứng minh tam giác AHC = tam giác DHC. Từ đó chứng minh tam giác ACD cân.
c, Chứng minh tam giác BDC vuông

NT
25 tháng 2 2022 lúc 13:19

a: \(AB=\sqrt{BH^2+AH^2}=5\left(cm\right)\)

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó:ΔAHC=ΔDHC

Suy ra: AC=DC

hay ΔACD cân tại C

c: Xét ΔBAD có 

BH là đường cao

BH là đường trung tuyến

Do đó: ΔABD cân tại B

Xét ΔBAC và ΔBDC có

BA=BD

AC=DC

BC chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

hayΔBDC vuông tại D

Bình luận (0)

Các câu hỏi tương tự
I7
Xem chi tiết
KN
Xem chi tiết
PM
Xem chi tiết
PM
Xem chi tiết
PM
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết