1: \(BE^2+CF^2+3AH^2\)
\(=BH^2-HE^2+CH^2-HF^2+3AH^2\)
\(=BH^2+CH^2+2AH^2\)
\(=BH^2+CH^2+2\cdot BH\cdot CH\)
\(=\left(BH+CH\right)^2=BC^2\)
2: \(BC\cdot BE\cdot CF=BC\cdot\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}=\dfrac{BC}{AB\cdot AC}\cdot AH^4\)
\(=AH^4\cdot\dfrac{BC}{AH\cdot BC}=AH^3\left(1\right)\)
\(BC\cdot HE\cdot HF=BC\cdot\dfrac{HA\cdot HB}{AB}\cdot\dfrac{HA\cdot HC}{AC}\)
\(=\dfrac{BC}{AB\cdot AC}\cdot HA^2\cdot HB\cdot HC\)
\(=\dfrac{BC}{AH\cdot BC}\cdot HA^2\cdot HA^2=\dfrac{HA^4}{AH}=AH^3\)(2)
Từ (1) và (2) suy ra \(AH^3=BC\cdot BE\cdot CF=BC\cdot HE\cdot HF\)