Ôn tập toán 7

TT

Cho tam giác ABC, vẽ điểm M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.

a) Chứng minh: tam giác ABM bằng tam giác DCM

b) Chứng minh: AB // DC

c)Kẻ BE vuông góc với AM ( E thuộc AM), CF vuông góc với DM (F thuộc DM). Chứng minh M là trung điểm của EF.

TL
19 tháng 12 2016 lúc 16:22

A B C D E F M

a) Xét ΔABM và ΔDCM có:

BM=CM(gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

AM=DM(gt)

=>ΔABM=ΔDCM(c.g.c)

b) Vì ΔABM=ΔDCM(cmt)

=>\(\widehat{ABM}=\widehat{DCM}\). Mà hai góc này pử vị trí sole trong

=>AB//DC

c)Xét ΔEBM và ΔFCM có:

\(\widehat{BEM}=\widehat{CFM}=90^o\)

BM=MC(gt)

\(\widehat{BME}=\widehat{CMF}\left(đđ\right)\)

=>ΔEBM=ΔFCM( cạnh huyền-góc nhọn)

=>ME=MF

=>M là trung điểm của EF

Bình luận (4)
LC
31 tháng 5 2017 lúc 10:38

2015-12-20_100918

a) Xét ΔABM và ΔDCM, có:

MB = MC (gt)

∠AMB = ∠DCM (đối đỉnh)

MA = MD (gt)

Vậy ΔABM = ΔDCM (c-g-c)

b) Từ ΔABM = ΔDCM (chứng minh câu a)

Suy ra: ∠ABM = ∠ DCM (hai góc tương ứng)

Mà hai góc ∠ABM và ∠DCM ở vị trí so le trong

Vậy AB // DC

c) Xét ΔBEM và ΔCFM (∠E = ∠F = 90º)

Có: MB = MC (gt)

∠AMB = ∠DMC (đối đỉnh)

Do đó: ΔBEM = ΔCFM (cạnh huyền-góc nhọn)

Suy ra: ME = MF (hai cạnh tương ứng)

Vậy M là trung điểm của EF

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
PT
Xem chi tiết
NN
Xem chi tiết
DN
Xem chi tiết
TT
Xem chi tiết